Gregor Becker FH Münster gregor.becker@fh-muenster.de

FH Münster University of Applied Sciences

Fachbereich Energie · Gebäude · Umwelt

A comparative study of open-source district heating modeling tools.

VS.

DHNx implemented in the SESMG

Thermos – A Horizon 2020 project

Background map © OpenStreetMap contributors

Testcase & Method

Test sub-urb considered within the comparative study Background map © OpenStreetMap contributors

Sub-urb building types:

- 3 commercial building
- 38 multi-family building
- 28 single-family building

In Herne-Baukau North Rhine-Westphalia.

Method:

- Thermos' optimization procedure is adapted within DHNx/SESMG
- Parameters are adjusted as far as possible

Optimization procedure:

- 1. Network-problem
- 2. Supply-problem

FH Münster University of Applied Sciences

Fachbereich Energie · Gebäude · Umwelt

1. Testcase & Method

- 2. Results
- 3. Comparison

FH Münster University of Applied Sciences

Fachbereich Energie · Gebäude · Umwelt

1. Testcase & Method

- Results 2.
- Comparison 3.

- Heat source
- street

Colors:

- not dimesionated / connected to network in both algorithms
- dimensionated / connected to network in Thermos
- dimensionated / connected to network in both algorithms

Comparison

property	Thermos	DHNx/SESMG
Computational time	seconds – minutes	minutes - hours
Customizability		
- time horizon	$\left(\times\right)$	\bigcirc
 simultanity factor 	$\left(\times \right)$	\bigtriangledown
 variable cost patterns 	\bigcirc	\bigotimes
- GHG emissions	cumulated per kWh	detailed
(plants)		
- GHG emissions	$\left(\times\right)$	\bigcirc
(pipes)		

 \rightarrow DHNx as "winner" due to the higher customizability, although this is bought by the weakness of the higher computing time

FH Münster University of Applied Sciences

Fachbereich Energie · Gebäude · Umwelt

- 1. Testcase & Methode
- 2. Results
- 3. Comparison

Questions? Feel free to ask one of us.

FH Münster University of Applied Sciences

Fachbereich Energie · Gebäude · Umwelt

Christian Klemm

Janik Budde

Gregor Becker

