Need for rapid results! Ideas for speedy optimisation?

Elif Turhan
18 May 2022
oemof user meeting

Motivation

 Complexity of energy system optimisation models and/or analysis

memory demand computing time

 Common and transferable methodologies reduce computational time, based on similar characteristics of energy system optimisations.

Model template for residential energy supply systems

- Implemented using oemof.solph & oemof.thermal
- Fixed demands (electricity, heat, DHW)
- Network predefined, techs sized by parameters
- WIP: Connecting locations using electricity and heating grid(s)

Pareto-optimisation

Use-case B: Monte Carlo Simulation

PV Capacity(MW)

Example Monte Carlo results

Overview of Different Methodologies

Methodology	Brief Description	• Problems
Time Slicing	Focusing on a specific section of time	 Significant deviations of the results compared to the global optimum of full optimisation
Spatial Aggregation	Reducing spatial fidelity of the model	 Pre-calculation for majority of network equivalents of the model could be time costly, if this data is not available.
Temporal Aggregation	Down sampling of highly detailed data set	 Hard to capture the dynamic behaviour of the renewable energy power outputs No clear best practice
Technological Aggregation	Reducing technological modelling accuracy	No clear best practice
Rolling Horizon	Solving smaller individual time slices sequentially	 Hard to account for long term variables or constraints May not meet the global optimum of the original problem
Temporal Zooming	Time slices optimised using info from coarser time scale optimisation.	Requirement for an additional model runMay not be as fast as rolling horizon

Conclusions

- Need for quicker optimisation because of broader analysis or more complicated energy system optimisation
- Various options to reduce the computational time
- Each of them have their drawbacks.

- Did you experience a need to speed up your optimisation?
- What difficulties did you experience and how did you overcome these?

Thank you for your attention!

