Introducing POMMES

A cosmos for modelling the German power sector using oemof.solph

pommesdata | pommesdispatch | pommesinvest
pommesdata
A full-featured transparent data preparation routine from raw data to POMMES model inputs

Overview

https://github.com/pommes-public/pommesdata

- **Aim**
 - Prepare data for pommesdispatch or pommesinvest
 - Dispatch: historical 2017-2021; projections until 2030
 - Investment: 2020-2045 (development)

- **Main data sources**
 - OPSD, BNetzA, FRESNA, ENTSO-E for power plants
 - BNetzA: tenders; ÜNB: Stamm- & Bewegungsdaten for RES
 - DESTATIS, BMWK, ISE, IEA, PIK et al. for costs

- **Main assumptions / estimates**
 - Efficiencies (DIW), minimum loads (demand regio + historical)
 - Future power plant development (TYNDP, BDEW, ISE)

Strengths / Weak Spots

- **Strengths**
 - Full transparency from raw data to model inputs
 - Near-term future power plant development
 - High detail for RES (& demand response; other scripts)

- **Weak spots**
 - Maintainance / maintainability
 - Time series data so far based only on 2017

Raw data → jupyter

data_prep.ipynb

POMMES inputs
pommesdispatch

A bottom-up fundamental model for the German electricity sector

Overview

https://github.com/pommes-public/pommesdispatch

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Manifestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial coverage</td>
<td>• DE + electrical neighbours (NTC approach)</td>
</tr>
<tr>
<td></td>
<td>• Spatial resolution: bidding zones</td>
</tr>
<tr>
<td>Time</td>
<td>• Typically one year in hourly resolution</td>
</tr>
<tr>
<td></td>
<td>• Run time on desktop machine ~2 hours</td>
</tr>
<tr>
<td>Implementation</td>
<td>• Optimization using oemof.solph</td>
</tr>
<tr>
<td></td>
<td>• Data management using pandas / .csv</td>
</tr>
</tbody>
</table>

Strengths / Weak Spots

Strengths

- detailed RES & power sector modelling
- well-tested (coverage > 90 %) & well documented
- pip installable & executable from console
- easily configurable via .yaml config file

Weak spots

- No spatial resolution & missing some European countries
- No unit commitment
pommesinvest

A bottom-up fundamental investment model for the German electricity sector

Overview

- https://github.com/pommes-public/pommesinvest

In short

- Determine power sector investments from 2020 to 2045
- Exogenous RES development (EEG 2023)
- Determine annual investments in power plants, storages and demand response
- Building on recent scenario data (Ariadne & Prognos)

Strengths / Weak Spots

Strengths

- Multi-period modelling approach + „classical” myopic horizon alternative
- Investments in all relevant power sector flexibility options (power plants, storage, demand response)
- (will also be) tested, pip installable, documented etc.

Weak spots

- Still under development
- Germany only; No endogenous RES investments
pommesevaluation
An evolving collection of ex post analyses for POMMES
Contact

Johannes Kochems

research associate at DLR, Institute of Networked Energy Systems, Stuttgart | PhD candidate at Technical University of Berlin

E-Mail: johannes.kochems@dlr.de kochems@campus.tu-berlin.de

GitHub: jokochems
Introducing POMMES

BACKUP
pommesdispatch – RES in the market premium scheme

Depicting RES opportunity costs to simulate negative prices

- **Background**
 - Modelling RES at 0 costs not sufficient
 - Consequence: no negative prices

- **Approach**
 - Empirical evaluation of RES values applicable using the „EEG-Bewegungsdaten“ from the German TSOs
 - Assumption: RES in the market premium model bid at (opportunity) costs* of
 \[-VA + E[MV] \]
 - Clustering RES by AW and type to reduce complexity and model negative price steps
 - One residual cluster for all RES in FIT

\(VA \): Value to be applied

\(E[MV] \): Expectation of market value; historical or estimate from previous iterations

RES: PV, Wind onshore / offshore

POMMES – power sector modelling | J. Kochems, Y. Werner, J. Giehl, B. Grosse et al.
18/05/2022
Problem
- Units are clustered
- → Approach for handling different lifetimes within cluster needed

Grouping of units
- Exogenous decommissioning or commissioning
- Endogenous investments

Approach for exogenous developments
- Determine likely commission / decommission date
- Decommissionings: Force min and max output of plant to zero if it will be decommissioned by decreasing min / max output
- Commissionings: Increase min / max output of cluster and add exogenous (investment-related) costs term in pos processing

<table>
<thead>
<tr>
<th>label</th>
<th>year</th>
<th>min_load_factor</th>
<th>max_load_factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>old_coal_cluster_1</td>
<td>2020</td>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>old_coal_cluster_1</td>
<td>2025</td>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>old_coal_cluster_1</td>
<td>2030</td>
<td>0.1</td>
<td>0.9</td>
</tr>
</tbody>
</table>

plant going offline accounted for 10% of overall cluster capacity