

Generic District Heating System Model

Structure and properties of the generic district heating system model

Flensburg, 05.05.2021

Workflow: Generic Heat System Model

Generic Heat System Model

Thermodynamic Power Plant Models

• Superheating with two-stage intercooling

TESPy-Simulation

0

10

Elektrische Leistung in MW

15

solph-Komponente

0

High-temperature heat pumps in district heating systems

Technology perspective for short- and medium-term use in multivalent systems

Flensburg, 05.05.2021

Objective

Technology assessment

 \rightarrow Which concepts are particularly attractive under which conditions?

Methodology

- Evaluation approach
 - \rightarrow Operationally optimized plant deployment
 - \rightarrow Investment calculation to evaluate probability realization

 \rightarrow Calculating hourly emissions of the district heating system in comparison to the overall energy system as a measure of system beneficiary

Methodology

General workflow

Input Data

• Characteristics

• Time series

S

Simulation

• Unit commitment optimization

Output Data

- Unit commitment time series
- Economical and ecological results

oemof['ø:mof] open energy modeling framework

Work packages

Work package 1

- Plant topologies
- Refrigerant
- Operating characteristics

Work package 2

- Embedding options
- Multivalent supply structures
- Plant operation

Work package 3

- Comparison between the various plant concepts
- Future scenarios

