DSM modeling in oemof.solph

Introducing the custom component SinkDSM

Guido Pleßmann Julian Endres

Reiner Lemoine Institut
December 6, 2019
Project context

- Research project WindNODE
- Building a regional ESM for Anhalt-Bitterfeld-Wittenberg
- Intended analysis: potential of flexibility options to foster regional energy supply
- Demand-Side Management in households is one option

Code (under development): https://github.com/windnode/WindNODE_ABW
A minimal testing energy system

Assuming we have a household including

Household busbar
Assuming we have a household including
 - Demand

Household busbar
A minimal testing energy system

Assuming we have a household including
- Demand
- PV

Household busbar
A minimal testing energy system

Assuming we have a household including
- Demand
- PV
- Grid connection

Household busbar
A minimal testing energy system

Assuming we have a household including
- Demand
- PV
- Grid connection
- Demand-side management unit

Household busbar
Create some data

```python
pv_day = [(-(1 / 6 * x ** 2) + 6) / 6 for x in range(-6, 7)]
pv_ts = [0] * 6 + pv_day + [0] * 6
```

```python
data_dict = {
    "demand_el": [3] * len(pv_ts),
    "pv": pv_ts,
    "Cap_up": [0.5] * len(pv_ts),
    "Cap_do": [0.5] * len(pv_ts)
}
```

```python
data = pd.DataFrame.from_dict(data_dict)
```

Do timestamp stuff

```python
datetimeindex = pd.date_range(start='1/1/2013', periods=len(data.index),
                              freq='H')
data['timestamp'] = datetimeindex
```

```python
data.set_index('timestamp', inplace=True)
```
Surrounding minimal energy system

```python
es = solph.EnergySystem(timeindex=datetimeindex)
Node.registry = es

b_elec = solph.Bus(label='Electricity bus')

grid = solph.Source(
    label='Grid',
    outputs={b_elec: solph.Flow(nominal_value=10000, variable_costs=50)})

pv = solph.Source(
    label='pv',
    outputs={b_elec: solph.Flow(actual_value=data['pv'], fixed=True, nominal_value=3.5)})
```
SinkDSM component

Create DSM Sink

demand_dsm = solph.custom.SinkDSM(label='DSM',
 inputs={b_elec: solph.Flow()},
 capacity_up=data['Cap_up'],
 capacity_down=data['Cap_do'],
 delay_time=6,
 demand=data['demand_el'],
 method="delay",
 cost_dsm_down=5)
How to model DSM?

On the representation of demand-side management in power system models

Alexander Zerrahn, Wolf-Peter Schill

Highlights

- We suggest improving the DSM model used by Göransson et al. (2014).
- Including an additional constraint resolves the problem of undue DSM recovery.
- We further develop an alternative DSM model which is both concise and linear.
- Our model does not impose a specific temporal structure on load shifts.
- Our formulation could readily be included in a wide range of energy models.

Abstract
DSM formulation 1: Zerrahn & Schill (delay)

\[
\dot{E}_t = \text{demand}_t + DSM_{t}^{up} - \sum_{tt=t-L}^{t+L} DSM_{t,tt}^{do} \quad \forall t \in \mathbb{T}
\]

(1)
DSM formulation 1: Zerrahn & Schill (delay)

\[
\dot{E}_t = \text{demand}_t + DSM_{t}^{up} - \sum_{tt=t-L}^{t+L} DSM_{t,tt}^{do} \quad \forall t \in \mathbb{T} \tag{1}
\]

\[
DSM_{t}^{up} = \sum_{tt=t-L}^{t+L} DSM_{t,tt}^{do} \quad \forall t \in \mathbb{T} \tag{2}
\]
DSM formulation 1: Zerrahn & Schill (delay)

\[
\dot{E}_t = demand_t + DSM_{t}^{up} - \sum_{tt=t-L}^{t+L} DSM_{t,tt}^{do} \quad \forall t \in \mathbb{T} \quad (1)
\]

\[
DSM_{t}^{up} = \sum_{tt=t-L}^{t+L} DSM_{t,tt}^{do} \quad \forall t \in \mathbb{T} \quad (2)
\]

\[
DSM_{t}^{up} \leq E_{t}^{up} \quad \forall t \in \mathbb{T} \quad (3)
\]
DSM formulation 1: Zerrahn & Schill (delay)

\[\dot{E}_t = \text{demand}_t + DSM_{t}^{up} - \sum_{tt = t-L}^{t+L} DSM_{t,tt}^{do} \quad \forall t \in \mathbb{T} \quad (1) \]

\[DSM_{t}^{up} = \sum_{tt = t-L}^{t+L} DSM_{t,tt}^{do} \quad \forall t \in \mathbb{T} \quad (2) \]

\[DSM_{t}^{up} \leq E_{t}^{up} \quad \forall t \in \mathbb{T} \quad (3) \]

\[\sum_{t = tt-L}^{tt+L} DSM_{t,tt}^{do} \leq E_{tt}^{do} \quad \forall tt \in \mathbb{T} \quad (4) \]
DSM formulation 1: Zerrahn & Schill (delay)

\[\dot{E}_t = \text{demand}_t + DSM_{t}^{up} - \sum_{tt=t-L}^{t+L} DSM_{t,tt}^{do} \quad \forall t \in \mathbb{T} \tag{1} \]

\[DSM_{t}^{up} = \sum_{tt=t-L}^{t+L} DSM_{t,tt}^{do} \quad \forall t \in \mathbb{T} \tag{2} \]

\[DSM_{t}^{up} \leq E_{t}^{up} \quad \forall t \in \mathbb{T} \tag{3} \]

\[\sum_{t=tt-L}^{tt+L} DSM_{t,tt}^{do} \leq E_{tt}^{do} \quad \forall tt \in \mathbb{T} \tag{4} \]

\[DSM_{t}^{up} + \sum_{tt=t-L}^{tt+L} DSM_{t,tt}^{do} \leq \max\{E_{tt}^{up}, E_{tt}^{do}\} \quad \forall tt \in \mathbb{T} \tag{5} \]
Basic testing data
How it works

Delay time: 3

What’s happening

▶ Interrupted wind generation in hour 4 set 100 MWh on hold
▶ Doubled wind generation in hour 7 compensates for demand that is set on hold
▶ Doubled wind generation around afternoon on the second day goes to excess
Shifting energy exceeding the delay time (basic)

Delay time: 1

What’s happening

- DSM allows to shift energy from first day morning to second day afternoon. How is that possible?
- Zerrahn et al.’s (2015) constraints allow to trigger DSM_{up} and DSM_{do} at the same time
- DSM_{up} and DSM_{do} are constrained to the tighter bound (Eq. (5))
Limited by DSM events in between (50 %)

Delay time: 1

Intermediate DSM trigger:
50 % of DSM_{up}

What's happening
- DSM activity in the morning of the first day: 50 MWh
- DSM shift that exceeds the delay time is limited: 50 MWh → 25 MWh
Effect of delay time

Delay time: 1

What’s happening

- DSM shift exceeding the delay of 50 MWh
Effect of delay time

Delay time: 2

What’s happening

▶ Longer delay times allow for more DSM shifts exceeding the delay time
Effect of delay time

Delay time: 3

What's happening ➤ ...and more
Effect of delay time

Delay time: 6

What’s happening
▶ and even more
Effect of delay time

Delay time: 6

What’s happening and even more

But...

the modeler interprets his/her results!
DSM modeling for households

Available data: technical DSM potential for groups of households
DSM potential

![Chart showing DSM potential with time-of-use pricing categories.]

- Max Stundenwerte leicht Flex Minus
- Max Stundenwerte leicht Flex Plus
- zugeh Max Flex Minus Werte
- zugeh Max Flex Plus Werte

December 6, 2019
Reiner Lemoine Institut
DSM formulation 2: Interval

The dataset for DSM potential does not allow to shift energy across days!

\[\dot{E}_t = \text{demand}_t + DSM_{up\ t} - DSM_{down\ t} \quad \forall t \in \mathbb{T} \]

\[DSM_{up\ t} \leq E_{up\ t} \quad \forall t \in \mathbb{T} \]

\[DSM_{down\ t} \leq E_{down\ t} \quad \forall t \in \mathbb{T} \]

\[t_s + \tau \sum_{t=t_s}^{t=t_s+\tau} DSM_{up\ t} = t_s + \tau \sum_{t=t_s}^{t=t_s+\tau} DSM_{down\ t} \quad \forall t \in \mathbb{T} \]

Using \(\tau = 1 \) sets the window for DSM activity to exactly one day.
DSM formulation 2: Interval

The dataset for DSM potential does not allow to shift energy across days!

\[\dot{E}_t = demand_t + DSM_{t}^{up} - DSM_{t}^{do} \quad \forall t \in \mathbb{T} \quad (6) \]
DSM formulation 2: Interval

The dataset for DSM potential does not allow to shift energy across days!

\[\dot{E}_t = demand_t + DSM^\text{up}_t - DSM^\text{do}_t \quad \forall t \in \mathbb{T} \]

(6)

\[DSM^\text{up}_t \leq E^\text{up}_t \quad \forall t \in \mathbb{T} \]

(7)
DSM formulation 2: Interval

The dataset for DSM potential does not allow to shift energy across days!

\[\dot{E}_t = \text{demand}_t + DSM_{t}^{up} - DSM_{t}^{do} \quad \forall t \in \mathbb{T} \]
\[DSM_{t}^{up} \leq E_{t}^{up} \quad \forall t \in \mathbb{T} \]
\[DSM_{t}^{do} \leq E_{t}^{do} \quad \forall t \in \mathbb{T} \]

\(\sum_{t}^{t+s+\tau} DSM_{t}^{up} = \sum_{t}^{t+s+\tau} DSM_{t}^{do} \quad \forall t, s, \tau \in \mathbb{T} \)
The dataset for DSM potential does not allow to shift energy across days!

\[
\dot{E}_t = \text{demand}_t + DSM_{t}^{up} - DSM_{t}^{do} \quad \forall t \in \mathbb{T} \tag{6}
\]

\[
DSM_{t}^{up} \leq E_{t}^{up} \quad \forall t \in \mathbb{T} \tag{7}
\]

\[
DSM_{t}^{do} \leq E_{t}^{do} \quad \forall t \in \mathbb{T} \tag{8}
\]

\[
\sum_{t=t_s}^{t_s+\tau} DSM_{t}^{up} = \sum_{t=t_s}^{t_s+\tau} DSM_{t}^{do} \quad \forall t_s \in \{k \in \mathbb{T} | k \mod \tau = 0\} \tag{9}
\]
DSM formulation 2: Interval

The dataset for DSM potential does not allow to shift energy across days!

\[\dot{E}_t = demand_t + DSM_{t}^{up} - DSM_{t}^{do} \quad \forall t \in \mathbb{T} \] \hspace{1cm} (6)

\[DSM_{t}^{up} \leq E_{t}^{up} \quad \forall t \in \mathbb{T} \] \hspace{1cm} (7)

\[DSM_{t}^{do} \leq E_{t}^{do} \quad \forall t \in \mathbb{T} \] \hspace{1cm} (8)

\[\sum_{t=t_s}^{t_s+\tau} DSM_{t}^{up} = \sum_{t=t_s}^{t_s+\tau} DSM_{t}^{do} \quad \forall t_s \in \{k \in \mathbb{T} | k \mod \tau = 0\} \] \hspace{1cm} (9)

Using \(\tau = 1 \) sets the window for DSM activity to exactly one day.
Comparing both formulations – delay method
Comparing both formulations – interval method

1HH_3Personen

10HH

50HH

demand_el
demand_dsm
cap_up
cap_do
wind
pv
coal1

December 6, 2019
Reiner Lemoine Institut
DSM energy on hold

DSM on hold

Dec 06, 2019

Reiner Lemoine Institut
Comparison by numbers

<table>
<thead>
<tr>
<th></th>
<th>demand_el</th>
<th>dsm_tot</th>
<th>excess</th>
<th>cap_up</th>
<th>cap_do</th>
<th>wind</th>
<th>pv</th>
<th>coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 HH 3 P. [delay]</td>
<td>91.0</td>
<td>18.0</td>
<td>43.0</td>
<td>109.0</td>
<td>34.0</td>
<td>96.0</td>
<td>15.0</td>
<td>23.0</td>
</tr>
<tr>
<td>10 HH</td>
<td>92.0</td>
<td>14.0</td>
<td>42.0</td>
<td>59.0</td>
<td>27.0</td>
<td>96.0</td>
<td>15.0</td>
<td>22.0</td>
</tr>
<tr>
<td>50 HH [delay]</td>
<td>89.0</td>
<td>13.0</td>
<td>43.0</td>
<td>57.0</td>
<td>27.0</td>
<td>96.0</td>
<td>15.0</td>
<td>21.0</td>
</tr>
<tr>
<td>100 HH [delay]</td>
<td>88.0</td>
<td>13.0</td>
<td>44.0</td>
<td>53.0</td>
<td>26.0</td>
<td>96.0</td>
<td>15.0</td>
<td>21.0</td>
</tr>
<tr>
<td>1 HH 3 P. [interval]</td>
<td>91.0</td>
<td>18.0</td>
<td>44.0</td>
<td>109.0</td>
<td>34.0</td>
<td>96.0</td>
<td>15.0</td>
<td>24.0</td>
</tr>
<tr>
<td>10 HH [interval]</td>
<td>92.0</td>
<td>12.0</td>
<td>43.0</td>
<td>59.0</td>
<td>27.0</td>
<td>96.0</td>
<td>15.0</td>
<td>23.0</td>
</tr>
<tr>
<td>50 HH [interval]</td>
<td>89.0</td>
<td>11.0</td>
<td>44.0</td>
<td>57.0</td>
<td>27.0</td>
<td>96.0</td>
<td>15.0</td>
<td>22.0</td>
</tr>
<tr>
<td>100 HH [interval]</td>
<td>88.0</td>
<td>11.0</td>
<td>45.0</td>
<td>53.0</td>
<td>26.0</td>
<td>96.0</td>
<td>15.0</td>
<td>22.0</td>
</tr>
</tbody>
</table>
1. Who plans to model DSM with oemof.solph in the near future?
2. Further development of SinkDSM
 - Move to `solph.Components` by v0.4.0?
 - Responsibility for SinkDSM?
 - Roadmap
License
Except where otherwise noted, this work and its content (texts and illustrations) are licensed under the Attribution 4.0 International (CC BY 4.0).
See license text for further information.

Guido Pleßmann Julian Endres
Tel: +49 (0)30 1208 434 72
E-Mail: guido.plessmann@rl-institut.de
Web: www.reiner-lemoine-institut.de
Twitter: @gplssm