

oemof developer meeting – session on rolling horizon optimization

Implementation of a rolling horizon / myopic optimization approach in the ER fundamental power market model

Johannes Kochems & Yannick Werner | Department of Energy and Resource Management at TU Berlin | 5 Decembre 2019

Motivation and background

Motivation

- General modelling approach: Using a power market model for
 - investment resp.
 - dispatch optimization for Germany implemented using oemof

- Need for measures for complexity reduction to fasten up solution times
 - dispatch model: Rolling horizon
 - investment model: Myopic optimization implemented as an option which can be chosen.

- Basic approach identical
 - dispatch model: shorter timeslices → a couple of days / weaks
 - investment model: longer timeslices → (multiple) entire years with limited foresight* and not necessarily an overlap

^{*}drawback: no longer term prognosis on future earnings Integrated (yet) which would influence investment decisions

Implementation: dispatch example (1) – initialization

1. Initialize by setting / calculating necessary parameters

```
timeslice_length_wo_overlap_in_hours = 168
overlap_in_hours = 48

# starttime and endtime must be manually set here
timeseries_start = pd.Timestamp(starttime, freq)
timeseries_end = pd.Timestamp(endtime, freq)

# Calculate timeslice length as well as overlap length
timeslice_length_wo_overlap_in_timesteps = {'60min': 1, '15min': 4}[freq] * timeslice_length_wo_overlap_in_hours
overlap_in_timesteps = {'60min': 1, '15min': 4}[freq] * overlap_in_hours
timeslice_length_with_overlap = timeslice_length_wo_overlap_in_timesteps + overlap_in_timesteps

# Calculate amount of timeslices needed
overall_timesteps = timesteps_between_timestamps(timeseries_start, timeseries_end, freq)
amount_of_timeslices = math.ceil(overall_timesteps / timeslice_length_wo_overlap_in_timesteps)
```

^{*}min uptime / min downtime constraints may be violated in our current implementation state when crossing timeslices.

Implementation: dispatch example (1) – initialization

1. Initialize by setting / calculating necessary parameters

```
timeslice_length_wo_overlap_in_hours = 168
overlap in hours = 48
# starttime and endtime must be manually set here
timeseries start = pd.Timestamp(starttime, freq)
timeseries end = pd.Timestamp(endtime, freq)
# Calculate timeslice length as well as overlap length
timeslice length wo overlap in timesteps = { '60min': 1, '15min': 4} [freq] * timeslice length wo overlap in hours
overlap in timesteps = { '60min' : 1, '15min' : 4} [freq] * overlap in hours
timeslice length with overlap = timeslice length wo overlap in timesteps + overlap in timesteps
# Calculate amount of timeslices needed
overall timesteps = timesteps between timestamps(timeseries start, timeseries end, freq)
amount of timeslices = math.ceil(overall timesteps / timeslice length wo overlap in timesteps)
logging.info('Creating a LP optimization model for dipatch optimization \n'
             'using a ROLLING HORIZON approach for model solution.')
# Initialization of RH model run
counter = 0
                                           Empty DataFrames used to store initial states:
storages_init df = pd.DataFrame()
                                              LP dispatch model: storage level only (1)
results = pd.DataFrame()
power prices = pd.DataFrame()
```

- MILP dispatch model: (1) + transformer states*
- LP invest model: (1) + all investment variables

*min uptime / min downtime constraints may be violated in our current implementation state when crossing timeslices.

05.12.20

Implementation: dispatch example (2) – model run; basically a for-loop

2. Iteratively build-up and solve model using a (simple) for-loop

```
# For loop controls rolling horizon model run
for counter in range (amount of timeslices):
    # (re)build optimization model in every iteration
    # Return the model, the energy system as well as the storage information
   om, es, timeseries start, storage labels, datetime index \
       = build_RH_model(path_folder_input, filename_node_data, filename_cost_data,
                         AggregateInput, Europe,
                         fuel cost pathway, timeseries start,
                         timeslice_length_wo_overlap_in_timesteps,
                         timeslice length with overlap,
                         counter,
                         storages init df,
                         freq, year)
```

Build model using initial states

- Slice timeseries:
 - Use full length (incl. overlap) for reading in data
 - Set starting point of next iteration (excl. overlap)
- Set initial states:
 - Obtained from input sheets for first iteration
 - Stored in Dataframe elsewhise

Implementation: dispatch example (2) – model run; basically a for-loop

2. Iteratively build-up and solve model using a (simple) for-loop

```
# For loop controls rolling horizon model run
for counter in range (amount of timeslices):
    # (re)build optimization model in every iteration
    # Return the model, the energy system as well as the storage information
   om, es, timeseries start, storage labels, datetime index \
       = build_RH_model(path_folder_input, filename_node_data, filename_cost_data,
                         AggregateInput, Europe,
                                                                     Build model using initial states
                         fuel cost pathway, timeseries start,
                                                                     Slice timeseries:
                         timeslice_length_wo_overlap_in_timesteps,
                         timeslice length with overlap,
                                                                       - Use full length (incl. overlap) for reading in data
                         counter,
                                                                       - Set starting point of next iteration (excl. overlap)
                         storages init df,
                                                                     Set initial states:
                         freq, year)
                                                                        - Obtained from input sheets for first iteration
                                                                       - Stored in Dataframe elsewhise
    # 14.05.2019, JK: Solve model and return results
   om, model results, results, overall objective, overall solution time, \
   power prices = solve_RH_model(om, datetime_index, counter,
                                  timeslice_length_wo_overlap_in_timesteps,
                                  results,
                                                                     Solve model
                                  power prices,
                                                                       - optimize
                                  overall objective,
                                                                       - concat results (excl. overlap)
                                  overall solution time,
                                  solver = solver)
```

Implementation: dispatch example (2) – model run; basically a for-loop

2. Iteratively build-up and solve model using a (simple) for-loop

```
# For loop controls rolling horizon model run
for counter in range (amount of timeslices):
    # (re)build optimization model in every iteration
    # Return the model, the energy system as well as the storage information
   om, es, timeseries start, storage labels, datetime index \
       = build_RH_model(path_folder_input, filename_node_data, filename_cost_data,
                         AggregateInput, Europe,
                                                                      Build model using initial states
                         fuel cost pathway, timeseries start,
                                                                      Slice timeseries:
                         timeslice_length_wo_overlap_in_timesteps,
                         timeslice length with overlap,
                                                                        - Use full length (incl. overlap) for reading in data
                         counter,
                                                                        - Set starting point of next iteration (excl. overlap)
                         storages init df,
                                                                      Set initial states:
                         freq, year)
                                                                        - Obtained from input sheets for first iteration
                                                                        - Stored in Dataframe elsewhise
    # 14.05.2019, JK: Solve model and return results
   om, model results, results, overall objective, overall solution time, \
   power_prices = solve_RH_model(om, datetime_index, counter,
                                  timeslice_length_wo_overlap_in_timesteps,
                                  results,
                                                                      Solve model
                                  power prices,
                                                                        - optimize
                                  overall_objective,
                                                                        - concat results (excl. overlap)
                                  overall solution time,
                                  solver = solver)
                                                                                  Obtain initial states

    get initial states (for next iteration)

    # Set initial states for the next model run
    # initial status for the first iteration is obtained from input data
   storages init df = initial states RH(model results, timeslice length wo overlap in timesteps,
                                         storage labels)
```

9 **E&R**

05.12.201

slide 7

Implementation: investment example – An overview on our myopic approach

- What differs compared to our dispatch implementation?
 - timeslices must be (multiple) entire years
 - a distinction between non leap years and leap years is included
 → leads to varying timeslice lengths
 - For this purpose, we introduced a timeslice_length_dict:

information stored for all iterations i

```
timeslice_length_dict = {i: (amount_of_years[i], timeslice_length_excl_overlap[i], timeslice_length_incl_overlap[i])}
```

...Most importantly: We call it myopic optimization, not rolling horizon optimization anymore. ;-)

Critical discussion and outlook

Critical discussion

- Drawbacks for our approach
 - General: We lose a global optimum
 decide on the basis of the modeling task and the hardware available
 - High computational overhead:
 - necessary data is read in "in chunks"
 - energy system is build up in every iteration
 - Lacking elements
 - Dumps are not properly included (yet)
 - Interemporal linking constraints are missing
- Advantages for our approach
 - Functional structure enables reusability
 - Computational advantage for MILP

- Reduce overhead
 - We prefer reading in the dataset upfront
 - Is there a workaround (planned) for not having to build the model everytime???
- Close the gaps
 - We will add proper dumps and unfold these at the end
 - Introduction of linking constraints dependent on whether we will use MILP / need a rolling horizon approach at all...
- Have a look on whether parts of the formulation can be generalized and made available in a small example

Literature

- Büllesbach, Fabian (2018): Simulation von Stromspeichertechnologien in regionaler und technischer Differenzierung. Freie wissenschaftliche Arbeit zur Erlangung des Grades eines Master of Science am Fachgebiet Energie- und Ressourcenmanagement der TU Berlin.
- Marquant, Julien F.; Evins, Ralph and Carmeliet, Jan (2015): Reducing Computation Time with a Rolling Horizon Approach Applied to a MILP Formulation of Multiple Urban Energy Hub System. In: Procedia Computer Science 51 (2015),S. 2137–2146. – ISSN 18770509

E&R