Masterthesis

,Validation of pv battery systems as a basis
for further simulation of electric vehicles”

Bl OSTBAYERI SCHE
) | ol TECHNISCHE HOCHSCHULE
REGENSBURG

O sonnen




What is the global goal of the masterthesis?

- Avrational statement about the optimal integration of electromobility into a decentralized energy system.




This leads to the central research question:

,How can an electric vehicle (EV) be optimally integrated into a PV battery system?*”
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How can this question be answered?

= Modelling of a self-consumption optimized PV battery system
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But what is exactly optimized?

The optimal solution to a problem is equivalent to the minimum/maximum of an objective function.
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The ideal modeling according to the AC topology:
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..and the modeling of losses according to the efficiency guideline.
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Synergy: Reality vs. Modeling

Can the modeling be used to simulate the behavior of a real self-consumption optimized pv battery system?

A daily control:

Real behaviour time series of a pv sonnenBatterie system
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To simulate the daily control:

= Reproduction of the flexible energy flows

= [ime discretization: 15-minute intervals

SIMULATION MODEL

INPUT OUTPUT
= Timeseries pv-generation = Storage behaviour
= Timeseries demand - = Energy exchange with the grid
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Synergy: Reality vs. Modeling

Comparison of storage and grid behaviour
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Prediction of the sonnenBatterie
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The perfect foresight of the optimizer
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What does that mean?
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the simulations results should be interpreted as the optimal solution, which causes the lowes cost

in reality, this solution can only be approximated

OT1H



A short summary:

= The modeling reproduces the behaviour of a self-consumption optimized pv battery system

= There are temporal discrepancys to reality due to the perfect foresight problem

—> To integrate electric vehicles in the simulation of pv battery systems a detailed validation makes the results more reliable




A weekly control of the storage behaviour...
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An annual control of the system behaviour...

= Anannual timeseries analysis becomes to confusing

—> another visualisation is necessary
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Visualisation using the NetZeroBalance [2]

= [llustration of every 15-minute energy flow situation with
one data point
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A short summary

Adequate reproduction of the system behaviour of a pv battery system over 1 year

BUT: No validation method to compare different dimensioned pv battery systems

- coefficient searched!




technical coefficients

= technical coefficients only balancing a part of the systems losses
= grade of autharky Not suitable - depends on battery size

= grade of own consumption NOt suitable - depends on size of pv plant

economic coefficients

= evaluate energy flows monetary in terms of costs € = kWh ’ klf/h
= independent of dimensioning

= with the correct choice of the definition limit, all losses are taken into account

- the standardized economic coefficient for pv battery systems of the HTW-Berlin: SPI (System Performance Index)
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SPI — System Performance Index 7 [1]
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Interpretation of the SPI

= the SPI states in a quantitative way how much the real pv battery system approaches the cost savings of
an ideal pv battery system

= thus, itis arate of efficiency related to an ideal pv battery system

= evaluates economic benefits of a pv battery system

—> with the SPI an annual validation of variable dimensioned pv battery systems is possible
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real SPI
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validation of one pv battery system
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validation result of 100 simulated pv battery systems
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Next thing to do...
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modeling an BV

An EV consists of a
= electrical storage and weekly drive profile
" the wayitis discharged
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modeling an EV

The BV gets integrated in the pv battery system in an unidirectional way

EV Demand

b_el EV
AC2EV = LinearTransformer (label="AC2EV',

input s={b_el_home:Flow(max=(data['behavior_store']), nominal_value=22) 1,
outputs={b_el_ev:Flow()},

conversion_factors:{b_el_ev: 1})
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Simulation of the EV integrated pv battery system:

= A weekly analysis

SIMULATION MODEL

INPUT
= T[imeseries pv-generation ‘ i — -
= Timeseries demand
= Timeseries drive profile j

OUTPUT

sonnenBatterie behaviour
EV battery behaviour
systemtransparency



Input data
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Analysis EV charging
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Transparency analysis

pv plant: 10,5 kWp
weekly demand: 68,8 kWh
sonnenBatterie: 8 kWh
EV battery: 30 kWh
winter transition period summer
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charging: DV £V battery
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charging: sonnenBatterie £V battery
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charging: grid £V battery
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Interpretation of simulations results

The charging priority of an electric vehicle connected to a self-consumption optimised pv battery
sytem consists as followed:

1. PV - charging
2. sonnenBatterie - charging

3. grid - charging

..this could be the basis for algorithm development...




Thank you for your attention!
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