

– The Open Energy Modelling Framework – Genesis, idea & concept

Simon Hilpert

Center for Sustainable Energy Systems Flensburg

09 May 2016

Presentation at the oemof user meeting

Genesis & idea

Underlying concept

Current and future developments

Motivation

Table: Energy system modelling challenges.

Challenge	Aspects
Complexity	sector coupling, temporal or regional res-
	olution, input data, result processing
Uncertainty	epistemic, aleatory, linguistic, decision,
	planning
Interdisciplinary Modelling	inclusion of human dimension, energy-
	water-food nexus
Scientific Standards	transparency, repeatability, reproducibil-
	ity, scrutiny, scientific progress
Model Utilization	usability, applicability, re-useability, result
	communication

What is oemof?

- Started 2014 merging models from ZNES and RLI
- Oemof is a project for **representation**, **modelling** and **analysis** of energy systems
- Provides a structured toolbox (framework) with a generic basis
- Allows to integrate *different* modelling approaches
- Considers power, heat and prospectively mobility,
- Tries to use synergies from collaboratives modelling
- Follows a strict free software philosophy (license GNU GPL v3)
- Target group: energy system modellers / model developers

The oemof library layer structure

Applications

Current and future developments $\ensuremath{\circ}$

Underlying concept

oemof user meeting - Simon Hilpert

с₁

c2

C3

C1

Methodology: Graph strucutre

Directed Graph Gb₁ G := (N, E)Nodes N $N := \{B, C\}$ Edges E $E \subseteq B \times C \cup C \times B$ b_2

с₁

c2

C3

C1

Methodology: Graph strucutre

Directed Graph Gb₁ G := (N, E)Nodes N $N := \{B, C\}$ Edges E $E \subseteq B \times C \cup C \times B$ Sources $C^+ \subset C$ Sinks $C^- \subseteq C$ b_2 Transformers $T \subset C$

Schematic illustration of an oemof model

oemof user meeting - Simon Hilpert

Future developments

oemof user meeting - Simon Hilpert

Near future developments

Improve Concepts

- Finish thoughts on improved data model
- Introducing multi-bus nodes

Most likely implemented

- Multi-Period (Expansion-Model)
- Implement different model families
- User defined (energy specific) components
- Simplify individual adaptation of models (flexible constraint adding)
- Improved Input / Outputlib API (solph)
- Speed-Up (solph)

Mid-term developments

Likely

- Scenario Definition (core / solph)
- Parallelisation (core / solph)
- Implementing new concepts (core / solph)
- Integrate piecewise linear constraints / objective functions (solph)
- PyPSA integration

Ideas

- Rolling horizon for (solph)
- Other libraries: Agent Based, Heuristics
- Start values for models / Use pyomo warmstart (solph)
- Enhance transparency

Questions?

Simon Hilpert (*M.Eng. Systems Engineering*)

Research Assistant / PhD Student Europa Universität Flensburg Auf Campus 1 D- 24943 Flensburg

T: +49 (0)461 805 3019

www.znes-flensburg.de

simon.hilpert@uni-flensburg.de

